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Abstract

A method to predict the failure path and mechanical response of metal sheets with randomly distributed holes under
uniaxial tension has been developed. The method considers all possible failure paths and estimates the load required to
break the perforated sheet along these paths. The predicted ultimate strength of the sheet is obtained by finding the
failure path with the lowest possible load. The results from the model are compared to tensile experiments on a set of
perforated aluminum sheets with different hole patterns. We found that the model, though relatively simple, could
capture the effects that hole distribution had on the ultimate strength of the sheet. The ideas presented here could be
extended to model the effect of reinforcement distribution in particle-reinforced composite materials. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In a previous effort Jia et al. (2002), we developed a method to determine periodic microstructures that
were, in some sense, representative of the complex hole patterns that existed in the aluminum sheets. Finite
element simulations of these ‘“‘representative unit cells” were then used to estimate the mechanical prop-
erties of the sheets. While the representative unit cell method accurately predicted the behavior of the
aluminum sheets, it has important limitations in terms of its application to a broader class of materials.
Unfortunately, for a unit cell to actually be representative of many real composite microstructures, it would
often have to be of such complexity that the corresponding finite element simulations would be compu-
tationally intractable, even for two-dimensional simulations.

In the present work, we sought to develop simpler methods that could predict the ultimate strength and
ductility of perforated aluminum sheets. The basis of the current approach is to consider all possible failure
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paths and to estimate the ultimate strength associated with each path (the failure paths are assumed to
proceed from hole to hole in the aluminum sheet). The predicted failure path is then simply the path with
the lowest ultimate strength. This method requires estimates of the local mechanical behavior of the sheet as
a function of the local length and orientation of a failure path segment. We obtained closed-form estimates
of ultimate strength assuming perfect plasticity. In addition, local failure behavior was also modeled by
performing finite element simulations of plastic flow between two adjacent holes. As in our previous study,
model predictions of mechanical behavior will be compared to uniaxial tensile experiments performed on
perforated aluminum sheets.

2. Method

Before we describe the model in detail, it will be useful to briefly review the experiments performed in our
original study. Six different hole patterns were generated, each containing 115 holes with a net volume
fraction of 10%. The patterns were printed onto sheets of paper, which in turn served as a template for the
aluminum tensile samples. The aluminum sheets were perforated with a drill in the prescribed pattern,
annealed, and finally subjected to standard uniaxial tensile tests. For every hole pattern, three tensile
samples were fabricated.

To predict the failure path and the ultimate strength of the perforated metal sheet, we considered all
feasible failure paths through the specimen, with the restriction that no “switchbacks” along the failure
path were allowed (i.e., a path starting from the left hand side of the specimen must always proceed to the
right hand side of the specimen). We further assumed that the failure path must lie upon line segments that
connect the centers of holes and that the first and last line segments of the path are horizontal lines that
connect the center of a hole to the edge of the sample. Even with these assumptions, there are numerous
possible failure paths that need to be considered.

Each possible failure path was divided into » multiple strips as shown in Fig. 1. Each strip within the
specimen contained a line segment connecting two half holes on each side of the strip. Strips that lay along
the edge of the specimen had only one half hole with the other side being the sample edge. We now assume
that each strip can be isolated and that plastic deformation can only occur along the line segments con-
necting the holes. Given that the plastic deformation was assumed to be confined to an area immediately
surrounding the connecting line segment, we expect that the mechanical response of each strip will be
affected by both the orientation 6 and length / of the line segment. In addition, the tensile stress on the ith
strip is assumed to depend on the normalized jump in displacement from the bottom to the top of the hole
so that we can write

Epath = Au/2r

0, = G(Spath;liaei) (1)

Fig. 1. Illustration of a failure path divided into multiple strips.
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Here, Au represents the difference in displacement across the hole, r is the hole radius and o¢; represents the
axial “engineering” stress (force per unit original cross-sectional area) in the strip. The variable gp,, 1s the
strain associated with the failure path, which is identical to the axial strain across the hole. Compatibility
between adjacent strips requires that at any point in the deformation the displacement jump Au is the same
for all of the strips. The mechanical response of the entire path is then simply the sum of the forces acting
on all the strips divided by the total width of the specimen.

The macroscopic stress—strain behavior X (. ) is calculated for each possible failure path. Among all of
the paths considered, the one with the lowest ultimate tensile strength is the predicted failure path. We used
two approaches in developing expressions for the mechanical response of each strip: the first approach is a
purely analytic derivation assuming perfect plasticity while the other involves finite element simulations of
strips with various combinations of line segment length and orientation.

2.1. Analytic approach

We assume that the material can be characterized as a rigid, isotropic, and perfect plastic material that
yields according to the Tresca (maximum shear stress) criterion. Given this assumption, the response of a
given strip will be independent of both the strain &, and line segment length /; so that o (epam; /;, 0;) can be
written more simply as ¢(0;). The assumption of perfect plasticity limits us in that the stress—strain behavior
of the sheet cannot be predicted. However, the analysis will provide estimates of ultimate strength and
predicted failure paths that can be compared with experiments.

We begin by ignoring the effects of the holes and considering a straight strip of material with width w,
thickness b, height 4, line segment length /, and orientation angle 6 (see Fig. 2). The line segment length
represents the distance between the edges of adjacent holes and not the distance between hole centers. In
effect, we are assuming that the material directly above and below each hole does not contribute to the load
carrying capacity of the structure. Because all of the plastic deformation is presumed to localize along the
line segment, we will assume that a plane of maximum shear stress passes through the line segment with
normal 7 and slip direction §. The unit vector along the line segment is / = (cosB,sin 6,0) and the tensile

——

~

Fig. 2. Schematic of a shear band within a strip of metal.
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axis is given by £ = (0, 1,0). We will denote the angle between 7 and 7 as ¢ and the angle between § and 7 as
p. Without loss of generality, we also assume that 0 < ¢ <7/2 and 0< < /2 (reversing the direction of
either the slip plane normal or the slip direction merely changes the sign of the shear stress).

Our goal is to determine the relationship between the tensile stress o; and the angle of the localized
plastic deformation 0,. The relationship between the tensile stress o; required for yielding and the yield
strength in shear, 7, is given by

TV

o= Mmax (2)
where
Mmax = max{|(¢-7)(¢-§)|} = max{|cos ¢ cos |} (3)

The maximum value of the Schmid factor, my,., will depend on the specific boundary conditions that we
apply to the sides of the material strip. Compatibility between adjacent strips suggests that there should be
no relative displacement of material across the slip plane in the x-direction. However, for the actual
problem under consideration, the slip planes will terminate at the free surfaces of holes, which in turn
suggests that relative motions in the x-direction would be kinematically permissible. We will consider the
effect of each of these assumptions on the mechanical response of the strip. These conditions on the de-
formation will be denoted as “fixed”” and ““free” boundary conditions, respectively.

2.1.1. Free boundary conditions

For a given angle 0 and applied stress g;, we wish to find the orientation of the slip plane normal 7z and
the slip direction § that will result in the maximize shear stress. In other words, for a prescribed angle 6 we
want to determine the values of ¢ and f that will maximize the quantity m = |cos ¢ cos fi|. Note that
-1 =0 because the slip plane passes through the line segment /, and that, by definition, 7 -7 = cos ¢.
Finally, given that 7 is a unit vector, we have

ny = cos ¢ n = —cos¢tand
nycos+nysinf =0 = { ny =cos¢ (4)
n+ni+nd=1 ny = 4/1 — (cos? ¢/ cos? 0)

In order for n3 to be a real number, we have the restriction that ¢ > 0. In addition, the fact that 72 and § are
perpendicular to one another imposes an additional constraint on the value of f§

I I
Z_p<BpL= 5
- ¢<p<] (5)
The maximum possible value for the cosf therefore occurs when f = /2 — ¢. The Schmid factor now
takes the form
m = |cos ¢ sin | = 1| sin 29| (6)
In general, the above expression is maximized when ¢ = n/4. Recall, however, from Eq. (4) that the value

of ¢ is restricted by the relationship ¢ > 6. Therefore, the maximum value of m can be written in the
following form

1 for 0<O0< n/4
Mmax = T . (7)
5sin20, for m/4<0< /2
The expression for the tensile strength of a given strip therefore becomes
[ 21, for 0< 0, < n/4
a(0:) = { 27,/sin20;, for n/4<0;<n/2 (8)
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The above expression becomes unbounded as 6; — =/2. It will prove useful to define a slightly different
quantity, S(0;) = o(0;) cos(0;), which represents the force per unit length of connecting line segment per unit
thickness. For the free boundary conditions, this quantity takes the form

[ 2t,cos0;, for0<0;,<n/4
S("f)—{fy/sine,-, for /4 < 0, <7/2 ©)

2.1.2. Fixed boundary conditions

The key assumption here is that slip in the x-direction is forbidden so that compatibility with adjacent
strips is maintained. With this assumption, the slip direction can be written simply as § = (0, cos 8, — sin f§).
Noting that the slip plane normal 7 is perpendicular to both the slip direction § and the direction of the line
segment I, we can obtain components of the slip plane normal in terms of the angles ¢, 5, and 6

fi-t=cos¢ 1y = COS ¢ n = —cos¢tanl
A-l=0 = < ncosh+nysin@ =0 = < ny =cos¢ (10)
n-§=0 nycos ff —n3sinf =0 n3 = cos ¢/ tan f8

Further noting that 7 is a unit vector, we can express the angle ¢ in terms of  and 0
1

= 11

cos” ¢ 1 + tan® 0 + cot? (11)
Substituting the above equation into the expression for the Schmid factor (Eq. (3)) gives

m? = cos® ¢ cos’ f = cos” /(1 + tan* 0 + cot® p) (12)

Inverting the above equation allows for a relatively simple expression of the Schmid factor in terms of tan? 0
and cos? f8
1 tan’0 1
m2  cos> B cos? B(1 — cos? f)

(13)

By minimizing the expression for 1/m? with respect to cos® B, it can be shown that the Schmid factor is
maximized when

1
2= ———— 14
cos™f 1 +cosf (14)
which results in the following expression for my,,
cos
max = T, 1
Mhmax = 1 05 0 (15)
Substituting into Eq. (2), the axial stress within a given strip takes the following form
7,(1 4 cos 0;)
0)=->——""7 16
a(0;) 050, (16)

Again, note that the expression for the axial stress in the strip becomes unbounded as §; — 7©/2. In terms of
the quantity S(0;) = a(0;) cos(0;) defined earlier, the response of the strip is given by

S(0;) = 1,(1 +cos6) (17)
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For either set of boundary conditions, the ultimate strength of a fracture path, X, is given by the following
expression

2 = Zi:l 0(0,')1,' COos 01' _ Zi:l S(Hz)lz (18)

w w

where w is the total width of the tensile sample.

2.2. Finite element approach

In contrast to the analytic approach where we assumed perfect plasticity, the power of finite elements
allows us to incorporate material hardening into a complete boundary value problem for a given material
strip. In this case, then, we can assume that the flow strength of each strip will take the more general form of
6; = 0(&pam; 11, 0;). By considering strips with various values of /; and 6; we can develop an approximate
description of the mechanical response of a strip with a line segment of arbitrary angle and length. We did,
however, find it more useful to characterize the response of the strip in terms of the normalized force

S(Spalh; li, 9,) = O—(Spath; li, 9,) COS(H,’)([,‘ + 27")/1, (19)

Using this quantity allows us to avoid the expected singular behavior as 0; — /2 as it was the for the
analytic approaches.

We begin by considering a strip of material with two half holes on each side as shown in Fig. 3. The strip
is loaded in tension by applying a uniform displacement rate ¥ to the top surface of the strip. To enforce
compatibility with surrounding strips, the sides of the region are required to remain straight. The boundary
conditions for the displacements u,(x,y) and u,(x,y) can be summarized as follows

uy(x,0) =0, wu(x,h)=V
u(0,y) =0, w(w,y) =U

where U and V are only functions of time. In addition, because we are simulating a state of uniaxial tension,
we will require that the net traction acting on the sides of the strip vanishes, i.e.,

(20)

/.v: 7(0,y)dy = /y: T(w,y)dy =0 (21)

y=0 y=0

where T (x,y) are the surface tractions. Also note from Fig. 3 that the material immediately surrounding the
connecting line segment / is treated as elastic—plastic while the material outside of this region is assumed to
have only elastic behavior. This assumption is necessary to force failure along the line segment / for all
values of the orientation angle 0. At lower angles, where this assumption is not necessary, we also per-
formed calculations with a completely elastic—plastic material strip. We found that the assumption of pure
elastic behavior outside of the region of localized plastic deformation did not significantly affect the pre-
dicted behavior.

The plastic behavior of the aluminum was assumed to be rate-independent J, flow theory with isotropic
hardening. The hardening behavior was obtained by tensile experiments on annealed, non-perforated, 1100
aluminum sheets and (see Fig. 4). For simplicity, we did not model any strain softening in the aluminum.
Instead, we assumed perfectly plastic behavior after the material reached its peak stress. Finite strain ki-
nematics were employed in conjunction with the material constitutive law because of the large strains that
develop during the analysis. Finally, quasi-static deformations were presumed so that equilibrium takes the
standard form of V - ¢ = 0, where ¢ is the stress tensor.

Solutions to the boundary value problems described above were obtained using the commercial finite
element code ABAQUS (1997). Calculations were performed using two-dimensional, four node, plane stress
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Fig. 3. Finite element model of a strip containing a line segment with two half holes on each end.
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Fig. 4. Behavior of commercially pure aluminum from tensile experiment.

elements. In addition, numerous calculations were performed with a full, three-dimensional representation
of the material strips using eight node brick elements. We found that the results from the three-dimensional
models did not significantly differ from those of the plane stress model. All of the reported results, therefore,

are from the plane stress case.
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The goal of the simulations is to predict the mechanical response of a strip with arbitrary length and
orientation of the connecting line segment. The normalized force S(epam; /;, 0;) was calculated at any instant
of time simply by summing all of the nodal axial forces from the top surface of the strip and divided by the
original line segment length / and original thickness. Likewise, the strain across the hole was given by
Epath = (u‘;1 — uf )/2r. An advantage to characterizing the deformation in terms of the hole expansion instead
of the extension of the whole strip is that the latter depends on the height of the strip / while the former is
independent of 4. In other words, otherwise identical strips with different height / give different predicted
stress—strain curves if the strain is based on the extension of the entire strip. In contrast, the behavior
becomes independent of / if the strain is measured across the hole.

The response of the strips given by the curves S(epam; /;, 0;) was fit with the following function

2 n
Sy + (Smax - Sv) (1 - (%) ) , for Ogspath <ég

%Smax(l + cos (nw)>, for & < épan < &2

& —é)

Si - S(Spath; lia 9[) - (22)

where the parameters S, Smax. €1, &, m were, in general, all assumed to be functions of /; and 0,. As with the
analytic approach, the macroscopic stress—strain behavior for the entire path is simply the sum of the forces
acting on each strip divided by the total width of the sample

Z:-qzl O'i(gpath; Ly 91‘)(11' + 2”) cos 0 - Z:—Ll Si(t‘?path; l;, Hi)li

w w

Z‘(8path) = (23)

3. Results

For the finite element approach, recall that the response of a given strip S(epam; i, 0;) was characterized
by the parameters S, Smax, €1, €&, and n which were, in general, all assumed to be functions of /; and 0; (see
Eq. (22)). By performing finite element analyses on a series of different strips, we could ascertain the de-
pendence of these parameters on the length /; and angle 0;. For example, the behavior of the ultimate
strength, Spax (7, 0), is shown in Fig. 5 while the measure of ductility, ¢(/, 0), is given in Fig. 6. Good fits to
the finite element results were obtained by assuming that the parameters S, and n were independent of
length and angle, with values of S, = 0 and n = 0.35. Lastly, using &(/, 0) = 2¢,(/, 6) gave a reasonable fit
to the eventual load drop predicted by the finite element calculations.

95

—a— |/r=0.862
—O—— 1/1=2.007
—— 1/=5.512
1/r=7.813

1 1 1 1 1 1 1 1 9

0 10 20 30 40 50 60 70 80 90
6

Fig. 5. Strip strength per unit length as a function of segment angle and segment length from finite element simulations, where r
represents the radius of the holes. Dashed lines represent extrapolations to high shear band angles.
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Fig. 6. Strip ductility as a function of segment angle and segment length from finite element simulations, where r represents the radius
of the holes. Dashed lines represent extrapolations to high shear band angles.

The behavior of Sy.x(Z, 0) is interesting in that it can be compared to the analytic results developed in
Section 2. Qualitatively, the curves generated for Sy, (7, 8) from the finite element results are quite similar
to the yield strength predictions given in Eq. (9) for the “free” boundary conditions and Eq. (17) for the
“fixed” boundary conditions. In fact, if the curves for Sy..(/,0) are normalized, they fall between those
predicted by the “fixed” and “free” boundary conditions. The fact that Si,.x(/, 0) is almost independent of
the length / is likely a consequence of our assumption of perfect plasticity after the maximum flow strength
of the aluminum is reached. In contrast, the ductility ¢ (/,0) (see Fig. 6) shows a strong dependence on
length when //r is small, but much less so as //r is increased. This is expected because the influence of the
holes should diminish as the length of the shear band increases.

Fig. 7 compares the fracture paths observed experimentally to those predicted by the analytic approach
with “fixed” boundary conditions, “free’” boundary conditions, and the finite element approach, respec-
tively. In each figure, the most common fracture paths observed experimentally are indicated by the solid
lines while the less common fracture paths are shown with dotted lines (recall that for each hole pattern,
three samples were fabricated and tested). The results from the theories are given in a similar manner. For a
given hole pattern and approach, we plotted the failure paths associated with the 10 lowest values of the
predicted ultimate strength. The expected failure path is the one with the lowest ultimate strength and is
indicated with the solid line. It is worth noting that for any hole pattern, the difference between the 10
lowest values of the predicted ultimate strength was at most 3.5%.

A cursory examination of the figures suggests that all of the methods seem to have roughly the same
level of agreement (and disagreement) between the predicted paths and those observed experimentally. A
closer examination of the results, however, indicate that the analytic approach with the “fixed”” condi-
tions and the finite element approach most often produce the best agreement with the experiments.
Conversely, the analytic approach with the “free” boundary conditions appears to have the poorest
correlation between theory and experiment. To quantify these discrepancies between theory and exper-
iment, we calculated the differences in theoretical ultimate strengths between the weakest predicted failure
path and the path most often seen experimentally (see Table 1). The results show that the strength of the
weakest path obtained with the “fixed” analytic approach was typically very close to the theoretical
strength of the experimentally observed path. In contrast, the analytic “free”” approach usually had the
largest difference between the calculated strength of the weakest path and the predicted strength of the
experimental path.
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Fig. 7. Comparison between experimentally observed and predicted failure paths.

Fig. 8 shows the correlation between predicted and experimentally measured ultimate tensile strengths.
Since the strengths predicted by analytic approaches are relative to an assumed shear strength, they were
normalized by a factor to be comparable to predictions by the finite element approach. The theoretical
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Pattern #5 Pattern #6

Experiments Analytic fixed BC Experiments Analytic fixed BC

Fig. 7 (continued)

Table 1
Difference in predicted ultimate strength between the weakest theoretical failure path and experimentally observed failure path
Pattern Analytic “fixed BCs” Finite element approach Analytic “free BCs”
#1 0% 0.28% 0%
#2 0.68% 0.86% 1.02%
#3 1.68% 7.50% 12.37%
#4 1.50% 2.28% 4.75%
#5 0.25% 0% 0%
#6 2.51% 3.20% 4.57%

strengths represent the absolute lowest strength predicted by any of the failure paths for a given hole
pattern. The slopes of linear fit lines are 1.18 for the analytic approach with “fixed”” boundary conditions,
1.19 for the analytic with “free”” boundary conditions, and 1.22 for the finite element approach. The fit
associated with the finite element calculation also comes close to passing through the origin, which suggests
that procedures were successful in predicting the magnitudes of the ultimate strengths. Overall, it appears
that the analytic approach with the “fixed” boundary conditions is most consistent in predicting the trends
in ultimate strength.

4. Discussion

We find the results from the current model to be quite encouraging. In comparison with our previous
effort Jia et al. (2002), the fracture path-based method described here is much simpler and computationally
less intensive. As Fig. 8 shows, its predictions of ultimate strength (analytic with “fixed” boundary con-
ditions) are comparable to the representative unit cell method. Given the difficulty in successfully predicting
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Fig. 8. Predicted ultimate strengths of the perforated aluminum sheets compared to experimental results. Horizontal bars represent the
range of strength variations for the three samples of each hole pattern exhibited in the experiments.

fracture paths, we are optimistic that further refinements in the model could result in a simple yet useful
tool for evaluating the role of reinforcement distribution on mechanical properties.

One surprising result is that the analytic method (with “fixed”” boundary conditions) had better agree-
ment in terms of both the fracture paths as well as the trends in ultimate strength when compared to the
finite element-based approach. This is remarkable given that the power of finite elements allowed for both
more realistic modeling of material behavior and a more complex geometry that accounted for the presence
of the holes. The reason for this surprising result is unclear, although two possibilities come to mind. First,
in the finite element-based procedures we assumed that the region outside of the shear band had perfectly
elastic behavior. While we determined that this assumption did not significantly alter the results at small
shear band angles, we do not know if the effect is significant at larger angles. A second possibility is our
assumption regarding the behavior of the aluminum matrix. For simplicity we assumed perfectly plastic
behavior in the aluminum once its ultimate strength was reached. A more realistic model would have in-
corporated strain softening into the analysis, as we did in our previous study.

In terms of future efforts, one possibility for refining the model is to borrow the idea of a “critical crack
length” from work of Ibnabdeljalil and Curtin (1997) on the failure of long-fiber reinforced composites. In
the work described here, we have implicitly assumed that the strength of the entire fracture path was the
controlling aspect of predicted strength of the aluminum sheets. For brittle materials, it is probably more
appropriate to assume that failure will first initiate on the weakest path that is of some pre-defined critical
length. Once a crack is formed, the final failure path will result from the propagation of the crack. For
ductile materials, a similar concept might prove to be useful, although we would expect the critical length
for ductile materials to be larger than for a corresponding brittle material.

We believe that the methods described herein have the potential to develop into a practical tool for
evaluating the effects of reinforcement distribution on the mechanical properties of composite materials.
Further studies on actual composites are required, however, if these ideas are to be accepted into practice.
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